

MODÜL C2 - ÜRETİMİN DÂHİLÎ KONTROLÜ VE ÜRÜNÜN RASTGELE ARALIKLARLA DENETIMLI MUAYENESINE DAYALI TIPE UYGUNLUK

Belge No / Certificate No Belgelendirme Tarihi - Bir Sonraki Belge Tarihi / Certification Date / Certificate Validity Date Belge Geçerlilik Tarihi / Document Validity Period Firma Unvanı ve Adresi / Company Name and Address

Marka / Model / Brand / Model Direktifi / Directive Modülü/Kategori / Module / Category

IIITeknik Değerlendirme Rapor No/ **Technical Evaluation Report No** Ürün Tipi / Product Type:

: 77-20-01-02

: 29.07.2022-29.07.2023 : 1 yıl / 1 year

: Fit Pharm Technologies GmbH Benzstraße 13 48619 Heek Nordrhein-Westfalen Deutschland

: FIT F260 : 2016/425 REGULATION : C2 MODÜLÜ/ KATEGORİ III

MODULE C2/CATEGORY

EN 149:2001+ A1:2009 Solunumla ilgili koruyucu cihazlar - Parçacıklara karşı koruma amaçlı filtreli yarım maskeler/ Respiratory protective devices - Filtering half masks to protect against particles

: 77-20-01-02

Ürünün Malzeme Bilgisi / Product Material Information: FIT F260 model ürünleri kumaş, elastik kayış, burun klipsi ve filtre katmanı kullanılarak imal edilmiştir./ FIT F260 model products are manufactured using fabric, elastic strap, nose clip, filter layer.

Faruk SARIHAN 29.07.2022

Karar Verici / Approver

Okan AKEL 29.07.2022 Sirket Müdürü / General manager

MNA Laboratuvarları San. Tic.Ltd .Şti Adres: Küçükbakkalköy Mahallesi Yenidoğan Cad.No:21 Ataşehir/İstanbul Tel: 0216 574 07 08 Faks: 0216 575 13 31 www.mnalab.com

(MODULE C2, ANNEX VII) (77-20-01-02)

Report No

: 77-20-01-02

Report Date

: 25.07.2022

Application No

: 77-20-01-02

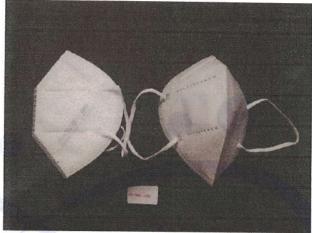
1. COMPANY INFORMATION:

Fit Pharm Technologies GmbH

Benzstraße 13 48619 Heek Nordrhein-Westfalen Deutschland

Tel: +491605319004

E-mail: s.babitzki@farm-innovation-team.de


2. PPE INFORMATION:

Disposable and non-sterile half mask made of particulate protection fitler material.

3. PPE TYPE IDENTIFICATION

EN 149:2001+A1:2009 Respiratory protective devices – Filtering half masks to protect against particles - Requirements, testing, marking

4. PPE PICTURES

FIT F260

5. PPE DIMENSIONS:

FIT F260 model has been found to be produced using standard size.

6. PPE PRODUCT MATERIAL INFORMATION:

The mask is made of elastic strap, nonwoven fabric on the outer and inner layers and fitler material on the middle layer.

7. ESSENTIAL HEALTH AND SAFETY REQUIREMENTS

- A visual inspection was made according to EN 149:2001 +A1:2009 for ergonomics.
- Protection levels and degrees are defined by the manufacturer.
- Suitable construction materials were determined by visual inspection according to EN 149:2001 +A1:2009.

8. ANALYSIS EVALUATION AND MARKING:

EN 149:2001 +A1:2009

Notified Body Number: 2841

(MODULE C2, ANNEX VII) (77-20-01-02)

TESTS	PARAMETER	LEVELS FFP1 FFP2 FFP3		RESULTS	PERFORMANC E LEVELS	EVALUATIO N
Part 7.3 Visual inspection	Shall also the markin supplied by the manu	g and the inform		Appropriate	-	PASS
Banned Azo Dyes	< 30 mg/kg			Not applicable	-	Not applicable
Part 7.4 Packaging	Particle filtering half for sale packaged in su protected against me contamination before	uch a way that the echanical damage	eyare	Appropriate	-	PASS
Part 7.5 Material	When conditioned in accordance 8.3.1 & 8.3.2 the particle filter half mask shall not collapse.			Appropriate	-	PASS
Part 7.6 Cleaning and disinfecting	After cleaning and disparticle filtering half penetration requirenclass.	mask shall satisf	y the	Not applicable	-	Not applicable
Part 7.7 Practical performance	No negative commenthe test subject regard evaluated.	ts should be mad ling any of the cri	le by teria	Appropriate		PASS
Part 7.8 Finish of parts	Parts of the device contact with the wear edge or burrs.	likely to come er shall have no s	into harp	Appropriate	•	PASS

TESTS	PARAMETER	No. of the Control of	PERFORMANCE LEVELS		RESULTS	PERFORMANCE LEVELS	EVALUATION
	FFP1 FFP2 FFP3						
Part 7.9.1 Total inward leakage	At least 46 out of the 50 individual exercise result	≤25	≤11	≤5	See the table below	FFP3	PASS
	At least 8 out of the 10 individual wearer arithmetic means	≤22	≤8	≤2	See the table below	FFP3	PASS

	Total Inwa	ard Leakage	(%)			
	Exercise 1	Exercise 2	Exercise 3	Exercise 4	Exercise 5	Average
Subject 1 (As received)	0,3	2,2	2,0	2,8	1,4	1,7
Subject 2 (As received)	0,7	0,6	0,6	0,7	0,5	0,6
Subject 3 (As received)	1,8	1,3	1,2	1,3	1,1	1,3
Subject 4 (As received)	1,2	1,3	1,6	1,2	1,3	1,3
Subject 5 (As received)	3,1	0,3	2,4	4,6	2,6	2,6
Subject 6 (After temperature conditioning)	1,2	0,9	0,9	1,3	1,0	1,1

(MODULE C2, ANNEX VII) (77-20-01-02)

Subject 7 (After temperature conditioning)	1,0	1,0	1,3		4.6	
Subject 8 (After temperature	1,0	1,0	1,3	1,4	1,6	1,3
conditioning)	0,9	0,9	1,5	1,6	1,3	1.2
Subject 9 (After temperature			1,5	1,0	1,3	1,2
conditioning)	1,9	1,6	1,2	1,5	1.6	1.6
Subject 10 (After temperature				1,5	1,0	1.6
conditioning)	1,2	0,9	0,9	1,3	1,2	1,1

Subject facial dimensions

Subject	Face Length (mm)	Face Width (mm)	Face Depth (mm)	Mouth Width (mm)
1	120	145	105	61
2	128	155	112	68
3	110	128	105	55
4	123	140	133	57
5	116	128	99	58
6	120	130	91	56
7	138	151	119	65
8	110	130	96	55
9	120	131	85	58
10	135	142	125	83

TESTS	PARAMETER PERFORMANCE LEVELS		RESULTS	PERFORMANCE LEVELS	EVALUATION		
	mer dan en en en en en en en en en en en en en	FFP1	FFP2	FFP3			
Part 7.9.2 Penetration of filter	Sodium chloride, 95 L/min %, max	% 20	% 6	%1	See the table below	FFP3	PASS
material	Paraffin oil, 95 L/min %, max	% 20	%6	%1	See the table below	FFP3	PASS

Penetration of filter material	Sodium Chloride (%)	Paraffin Oil (%)	
As received	0,3	0,3	
As received	0,2	0,4	
As received	0,3	0,4	
After the simulated wearing treatment	0,2	0,4	
After the simulated wearing treatment	0,3	0,4	
After the simulated wearing treatment	0,2	0,3	
Mechanical strength and temperature conditioning (120mg)	0,5	0,8	
Mechanical strength and temperature conditioning (120mg)	0,5	0,6	
Mechanical strength and temperature conditioning (120mg)	0,4	0,8	

TESTS	PARAMETER		PERFORMANC LEVELS	N Val		RESULTS	PERFORMANCE LEVELS	EVALUATION
1		FFP1	FFP2	FFP3	万 罗			

(MODULE C2, ANNEX VII) (77-20-01-02)

Part 7.10	MALL IN THE PROPERTY OF THE PR	VIII) (77-20-(JT-0Z)	
Compatibility with skin	Materials shall not be known to be likely to cause irritation or any other adverse effect to health	Appropriate	-	PASS
Part 7.11 Flammibility	Mask shall not burn or not to continue to burn for more than 5 s	Flame not	-	PASS
Part 7.12 Carbondioxide content of the inhalation air	Shall not exceed an average of % 1	0,82 0,85 0,80	-	PASS
Part 7.13 Head harness	It can be donned and removed easily	Appropriate	-	PASS
Part 7.14 Field of vision	The field of vision shall acceptable in practical performance test.	Appropriate	-	PASS
Part 7.15 Exhalation valve(s)	It shall withstand axially a tensile force of 10 N apply for 10 s. If fitted, shall continue to operate correctly after a continuous exhalation flow of 300 L/min over a period of 30 s.	Not applicable	-	Not applicable

TESTS	PARAMETER	PARAMETER PERFORMANCE RESULEVELS			RESULTS PERFORMANC LEVELS		EVALUATION
		FFP1	FFP2	FFP3			
Part 7.16 Breathing	Inhalation 30L/min	0,6 mbar	0,7 mbar	1,0 mbar	See the table below	FFP3	PASS
Resistance	Inhalation 95L/min	2,1 mbar	2,4 mbar	3,0 mbar	See the table below	FFP3	PASS
-	Exhalation 160L/min	3,0 mbar	3,0 mbar	3,0 mbar	See the table below	FFP3	PASS

Breathing Resistance (mbar)	Inhalation 30L/min	Inhalation 95L/min
As received	0,7	2,2
As received	0,8	2,1
As received	0,8	2,1
After temperature conditioning	0,7	2,0
After temperature conditioning	0,7	2,1
After temperature conditioning	0,8	2,0
After the simulated wearing treatment	0,6	2,0
After the simulated wearing treatment	0,6	2,0
After the simulated wearing treatment	0,7	2,0

Facing directly ahead	Facing vertically upwards	Facing vertically downwards	Lying on the left side	Lying on the right side
2,7	2,7	2.9	27	2,7
2,8	2.8			2,9
2,8		and the same of th		2,9
2,8		/30/5//		
22.74				2,7
2	head ,7 ,8	lirectly upwards 2,7 2,7 8,8 2,8 8,8 2,8 8,8 2,7	lirectly upwards vertically downwards 2,7 2,7 2,9 2,9 2,8 2,8 2,7 2,8 2,7 2,8 2,7 2,8	lirectly upwards vertically downwards left side left sid

Notified Body Number: 2841

(MODULE C2, ANNEX VII) (77-20-01-02)

After temperature conditioning	2.0		/ (, , =0 (11-02	
	2,8	2,8	2,8	2,8	2.7
After the simulated wearing treatment	2,4	2,3	2,3	2,4	2,3
After the simulated wearing treatment	2,3	2,4	2,3	2,4	
After the simulated wearing treatment	23	2,3			2,3
and an earliest	2,0	2,3	2,3	2,3	2,4

TESTS	PARAMETER	PERF6	ORMAN LS	CE	RESULTS	PERFORMANCE LEVELS	EVALUATION
		FFP1	FFP2	FFP3			
Part 7.17 Clogging	After clogging the inhalation resistances shall not exceed. (valved)	4 mba r	5 mba r	7 mbar	Not applicable	-	Not applicable
	The exhalation resist 3 mbar at 160 L/ (valved)				Not applicable	-	Not applicable
	After clogging the inhalation and exhalation resistances shall not exceed. (valveless)	3 mba r	4 mba r	5 mbar	Not applicable		Not applicable
Part 7.18 Demountable part	All demountable par readily connected possible by hand.	ts (if fi and s	tted) sh ecured	nall be were	Not applicable		Not applicable
Part 9 Marking	The packaging inform and durably marke commercially availated legible through it transparent.	d on able p	the sn	nallest g or	Appropriate	-	PASS

9. DECISION

Analysis and examinations FIT F260 model coded personal protective equipment; Respiratory Protective Devices EN 149:2001 +A1:2009- Filtered Half Masks for Protection Against Particles - Properties, Experiments and Marking standards are evaluated. The homogeneity of the production was monitored at the performance levels determined as a result of the technical evaluations made within the scope of MODULE C2.

10. ATTACHMENTS

- Basic Health Safety Requirements
- Risk Assessment
- Test Reports (M-2022-0321)
- User Instruction

CONTROLLER

: FARUK SARIHAN

SIGNATURE

DATE

: 25.07.2022

MNA LABORATORY ANALYSIS REPORT

Report Nu. : M-2022-0321 Date : 2022-06-18 12:28:03 Page : 1 / 5 Rev:

Purpose of Analysis : Special request

Sample Send Org. : FIT Pharm Technologies GmbH

Address : Benzstr. 13

Sample Acceptance Date : 2022-03-31 16:56:54

Analysis Date : 2022-03-31 17:02:40

Sample Quantity : 80 Pieces

Sample Description : F260

Other informations :

Flammability

Tests	Analysis result	Limit Value	Method	Evaluation	Physical Condition
Flammability	Check the table for results.	Shall not burn for more than 5 sec after removal from the flame	EN 13274-4	PASS	-

Penetration Of Filter Material

Tests	Analysis result	Limit Value	Method	Evaluation	Physical Condition
Penetration Of Filter Material	Check the table for results.	FFP1≤20 FFP2≤6 FFP3≤1	EN 149+A1 Part 8.11, EN 13274-7	PASS(FFP3)	-

	Sodium Chloride (%)	Paraffin Oil (%)
As received 1	0,3	0,3
As received 2	0,2	0,4
As received 3	0,3	0,4
After the simulated wearing treatment 1	0,2	0,4
After the simulated wearing treatment 2	0,3	0,4
After the simulated wearing treatment 3	0,2	0,3
Mechanical strength and temperature conditioning (120 mg) 1	0,5	0,8
Mechanical strength and temperature conditioning (120 mg) 2	0,5	0,6
Mechanical strength and temperature conditioning (120 mg) 3	0,4	0,8

MNA LABORATORY ANALYSIS REPORT

Report Nu. : M-2022-0321	Date: 2022-06-18 12:28:03	Page : 2 / 5	Rev:

Carbon Dioxide Content Of The Inhalation Air

Tests	Analysis result	Limit Value	Method	Evaluation	Physical Condition
Carbon Dioxide Content Of The Inhalation Air	Check the table for results.	Maximum %1	EN 149+A1 Part 8.7	PASS(FFP3)	-

	CO2 (%)
Sample 1	0,82
Sample 2	0,85
Sample 3	0,80

Breathing Resistance

Tests	Analysis result	Limit Value	Method	Evaluation	Physical Condition
Breathing Resistance	Check the table for results.	Check the table for limits	EN 149+A1 Part 8.9	PASS(FFP3)	-

Classification	30 L/min max basınç (mbar)	95 L/min max basınç (mbar)	160 L/min max basınç (mbar)
FFP1	0,6	2,1	3,0
FFP2	0,7	2,4	3,0
FFP3	1,0	3,0	3,0

Inhalation	30 L/min	95 L/min
As received 1	0,7	2,2
As received 2	0,8	2,1
As received 3	0,8	2,1
After temperature conditioning 1	0,7	2,0
After temperature conditioning 2	0,7	2,1
After temperature conditioning 3	0,8	2,0
After the simulated wearing treatment 1	0,6	2,0
After the simulated wearing treatment 2	0,6	2,0
After the simulated wearing treatment 3	0,7	2,0
After the flow conditioning 1	-	-

MNA LABORATORY ANALYSIS REPORT

Report Nu. : M-2022-0321	Date : 202	2-06-18 12:28:03	Page : 3 / 5		Rev:
After the flow conditioning 2		-		-	
After the flow conditioning 3		-		-	

Exhalation	nalation Facing directly ahead		Facing vertically downwards	Lying on the left side	Lying on the right side
As received 1	2,7	2,7	2,9	2,7	2,7
As received 2	2,8	2,8	2,9	2,7	2,9
As received 3	eceived 3 2,8		2,7	2,8	2,9
After temperature conditioning 1			2,8	2,7	2,7
After temperature conditioning 2	2,7	2,7	2,7	2,7	2,7
After temperature conditioning 3	2,8	2,8	2,8	2,8	2,7
After the simulated wearing treatment 1	2,4	2,3	2,3	2,4	2,3
After the simulated wearing treatment 2			2,3	2,4	2,3
After the simulated wearing treatment 3	2,3	2,3	2,3	2,3	2,4
After the flow conditioning 1	-	-	-	-	-
After the flow conditioning 2	-	-	-	-	-
After the flow conditioning 3	-	-	-	-	-

Total Inward Leakage

	Tests	Analysis result	Limit Value	Method	Evaluation	Physical Condition
Т	otal Inward Leakage	Check the table for results.	Check the table for limits	EN 149+A1 Part 8.5	PASS(FFP3)	-

	At least 46 out of the 50 individual exercise result shall be not greater than	At least 8 out of the 10 individual wearer arithmetic means shall be not greater than	
FFP1	≤25	≤22	
FFP2	≤11	≤8	
FFP3	≤5	≤2	

MNA LABORATORY ANALYSIS REPORT

Report Nu.: M-2022-0321 Date: 2022-06-18 12:28:03 Page: 4 / 5 Rev:

	Exercise 1	Exercise 2	Exercise 3	Exercise 4	Exercise 5	Average
Subject 1 (As received)	0,3	2,2	2,0	2,8	1,4	1,7
Subject 2 (As received)	0,7	0,6	0,6	0,7	0,5	0,6
Subject 3 (As received)	1,8	1,3	1,2	1,3	1,1	1,3
Subject 4 (As received)	1,2	1,3	1,6	1,2	1,3	1,3
Subject 5 (As received)	3,1	0,3	2,4	4,6	2,6	2,6
Subject 6 (After temperature conditioning)	1,2	0,9	0,9	1,3	1,0	1,1
Subject 7 (After temperature conditioning)	1,0	1,0	1,3	1,4	1,6	1,3
Subject 8 (After temperature conditioning)	0,9	0,9	1,5	1,6	1,3	1,2
Subject 9 (After temperature conditioning)	1,9	1,6	1,2	1,5	1,6	1,2
Subject 10 (After temperature conditioning)	1,2	0,9	0,9	1,3	1,2	1,1

MNA LABORATORY ANALYSIS REPORT

Report Nu.: M-2022-0321 Date: 2022-06-18 12:28:03 Page: 5 / 5 Rev:

Operating as a test laboratory, MNA Laboratories is accredited by TÜRKAK according to AB-1183-T and TS_EN_ISO/IEC_17025:2017 standards has been done. A multilateral agreement with the European Accreditation Association (EA) on the recognition of the Turkish Accreditation Agency (TÜRKAK) test reports and It has signed a mutual recognition agreement with the International Laboratory Accreditation Association (ILAC).

*The analysis is within the scope of accreditation.

Note:

- 1. No part of this analysis report may be used alone or separately and may be partially copied or reproduced without the written permission of the laboratory. It cannot be reproduced, used by third parties or as a means of advertising.
- 2. Analysis results are valid for the sample sent and analyzed by the company/institution/individual to MNA Laboratories. represent the whole may not.
- 3. Unsigned and Unsealed reports are invalid.
- 4. This analysis report cannot be used in judicial-administrative proceedings and for advertising purposes.
- 5. Results are valid for the sample received.
- 6. A decision rule is a rule that determines how measurement uncertainty is to be taken into account when specifying compliance with a specified specification.TLM-052 Decision Rule According to the implementation instruction, the decision rule chosen in agreement with the customer will be applied if
- 7. Limit Values are determined by taking from analysis methods.
- 8. The laboratory is not responsible if the information provided by the CUSTOMER affects the validity of the results.
- 9. Test and / or measurement results, expanded measurement uncertainties (if any) and test methods are given in the following pa ges, which are the supplementary
- part of this certificate.

 10. Water Repellency Determination Hydrostatic Pressure Determination T S ISO 811 (Hydrostatic Pressure Tester E / N: 53) Analysis, Seam Strength EN ISO 13965-2 (Strength Test Device E / N: 50) Analysis and resistance to liquid chemical permeation TS EN 659 -A1 Part 3.18 (Liquid Chemical Transfer Device E / N: 107) Analysis is carried out in the conditioning room and ISO 139 PART 3.2 conditions (23 \pm 2 $^{\circ}$ C temperature and 50 \pm 4% relative humidity) are applied for ambient conditions.

Selin Gergin

Sample Acceptance and Reporting Officer

2022-06-18 12:27:51

Erhan Üstünel

Laboratuvar Sorumlusu

2022-06-17 17:49:38

VOLKAN AKIN

Laboratuvar Müdürü

2022-06-18 11:47:15